Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,045)
  • Open Access

    ARTICLE

    Multi-Neighborhood Enhanced Harris Hawks Optimization for Efficient Allocation of Hybrid Renewable Energy System with Cost and Emission Reduction

    Elaine Yi-Ling Wu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1185-1214, 2025, DOI:10.32604/cmes.2025.064636 - 11 April 2025

    Abstract Hybrid renewable energy systems (HRES) offer cost-effectiveness, low-emission power solutions, and reduced dependence on fossil fuels. However, the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints. This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization (MNEHHO) algorithm to address the allocation of HRES components. The proposed approach integrates key technical parameters, including charge-discharge efficiency, storage device configurations, and renewable energy fraction. We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability. The MNEHHO algorithm employs multiple neighborhood structures… More >

  • Open Access

    ARTICLE

    Maximum Power Point Tracking Control of Offshore Wind-Photovoltaic Hybrid Power Generation System with Crane-Assisted

    Xiangyang Cao1,2, Yaojie Zheng1,2, Hanbin Xiao1,2,*, Min Xiao2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 289-334, 2025, DOI:10.32604/cmes.2025.063954 - 11 April 2025

    Abstract This study investigates the Maximum Power Point Tracking (MPPT) control method of offshore wind-photovoltaic hybrid power generation system with offshore crane-assisted. A new algorithm of Global Fast Integral Sliding Mode Control (GFISMC) is proposed based on the tip speed ratio method and sliding mode control. The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter. An offshore wind power generation system model is presented to verify the algorithm effect. An offshore More >

  • Open Access

    ARTICLE

    An Effective Lung Cancer Diagnosis Model Using Pre-Trained CNNs

    Majdi Rawashdeh1,2,*, Muath A. Obaidat3, Meryem Abouali4, Dhia Eddine Salhi5, Kutub Thakur6

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1129-1155, 2025, DOI:10.32604/cmes.2025.063765 - 11 April 2025

    Abstract Cancer is a formidable and multifaceted disease driven by genetic aberrations and metabolic disruptions. Around 19% of cancer-related deaths worldwide are attributable to lung and colon cancer, which is also the top cause of death worldwide. The malignancy has a terrible 5-year survival rate of 19%. Early diagnosis is critical for improving treatment outcomes and survival rates. The study aims to create a computer-aided diagnosis (CAD) that accurately diagnoses lung disease by classifying histopathological images. It uses a publicly accessible dataset that includes 15,000 images of benign, malignant, and squamous cell carcinomas in the lung.… More >

  • Open Access

    ARTICLE

    Chaos-Based Novel Watermarked Satellite Image Encryption Scheme

    Mohamed Medani1, Yahia Said2, Nashwan Adnan Othman3,4, Farrukh Yuldashev5, Mohamed Kchaou6, Faisal Khaled Aldawood6, Bacha Rehman7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1049-1070, 2025, DOI:10.32604/cmes.2025.063405 - 11 April 2025

    Abstract Satellite images are widely used for remote sensing and defence applications, however, they are subject to a variety of threats. To ensure the security and privacy of these images, they must be watermarked and encrypted before communication. Therefore, this paper proposes a novel watermarked satellite image encryption scheme based on chaos, Deoxyribonucleic Acid (DNA) sequence, and hash algorithm. The watermark image, DNA sequence, and plaintext image are passed through the Secure Hash Algorithm (SHA-512) to compute the initial condition (keys) for the Tangent-Delay Ellipse Reflecting Cavity Map (TD-ERCS), Henon, and Duffing chaotic maps, respectively. Through More >

  • Open Access

    ARTICLE

    Numerical Analysis of Entropy Generation in Joule Heated Radiative Viscous Fluid Flow over a Permeable Radially Stretching Disk

    Tahir Naseem1, Fateh Mebarek-Oudina2,3,*, Hanumesh Vaidya4, Nagina Bibi5, Katta Ramesh6,7, Sami Ullah Khan8

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 351-371, 2025, DOI:10.32604/cmes.2025.063196 - 11 April 2025

    Abstract Maximizing the efficiency of thermal engineering equipment involves minimizing entropy generation, which arises from irreversible processes. This study examines thermal transport and entropy generation in viscous flow over a radially stretching disk, incorporating the effects of magnetohydrodynamics (MHD), viscous dissipation, Joule heating, and radiation. Similarity transformations are used to obtain dimensionless nonlinear ordinary differential equations (ODEs) from the governing coupled partial differential equations (PDEs). The converted equations are then solved by using the BVP4C solver in MATLAB. To validate the findings, the results are compared with previously published studies under fixed parameter conditions, demonstrating strong… More >

  • Open Access

    ARTICLE

    Prediction and Comparative Analysis of Rooftop PV Solar Energy Efficiency Considering Indoor and Outdoor Parameters under Real Climate Conditions Factors with Machine Learning Model

    Gökhan Şahin1,*, Ihsan Levent2, Gültekin Işık2, Wilfried van Sark1, Sabir Rustemli3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1215-1248, 2025, DOI:10.32604/cmes.2025.063193 - 11 April 2025

    Abstract This research investigates the influence of indoor and outdoor factors on photovoltaic (PV) power generation at Utrecht University to accurately predict PV system performance by identifying critical impact factors and improving renewable energy efficiency. To predict plant efficiency, nineteen variables are analyzed, consisting of nine indoor photovoltaic panel characteristics (Open Circuit Voltage (Voc), Short Circuit Current (Isc), Maximum Power (Pmpp), Maximum Voltage (Umpp), Maximum Current (Impp), Filling Factor (FF), Parallel Resistance (Rp), Series Resistance (Rs), Module Temperature) and ten environmental factors (Air Temperature, Air Humidity, Dew Point, Air Pressure, Irradiation, Irradiation Propagation, Wind Speed, Wind… More >

  • Open Access

    ARTICLE

    BIG-ABAC: Leveraging Big Data for Adaptive, Scalable, and Context-Aware Access Control

    Sondes Baccouri1,2,#,*, Takoua Abdellatif 3,#

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1071-1093, 2025, DOI:10.32604/cmes.2025.062902 - 11 April 2025

    Abstract Managing sensitive data in dynamic and high-stakes environments, such as healthcare, requires access control frameworks that offer real-time adaptability, scalability, and regulatory compliance. BIG-ABAC introduces a transformative approach to Attribute-Based Access Control (ABAC) by integrating real-time policy evaluation and contextual adaptation. Unlike traditional ABAC systems that rely on static policies, BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes, ensuring precise and efficient access control. Leveraging decision trees evaluated in real-time, BIG-ABAC overcomes the limitations of conventional access control models, enabling seamless adaptation to complex, high-demand scenarios. The framework adheres to the… More >

  • Open Access

    ARTICLE

    SNN-IoMT: A Novel AI-Driven Model for Intrusion Detection in Internet of Medical Things

    Mourad Benmalek1,*,#,*, Abdessamed Seddiki2,#, Kamel-Dine Haouam1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1157-1184, 2025, DOI:10.32604/cmes.2025.062841 - 11 April 2025

    Abstract The Internet of Medical Things (IoMT) connects healthcare devices and sensors to the Internet, driving transformative advancements in healthcare delivery. However, expanding IoMT infrastructures face growing security threats, necessitating robust Intrusion Detection Systems (IDS). Maintaining the confidentiality of patient data is critical in AI-driven healthcare systems, especially when securing interconnected medical devices. This paper introduces SNN-IoMT (Stacked Neural Network Ensemble for IoMT Security), an AI-driven IDS framework designed to secure dynamic IoMT environments. Leveraging a stacked deep learning architecture combining Multi-Layer Perceptron (MLP), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM), the model optimizes data management More >

  • Open Access

    ARTICLE

    Performance vs. Complexity Comparative Analysis of Multimodal Bilinear Pooling Fusion Approaches for Deep Learning-Based Visual Arabic-Question Answering Systems

    Sarah M. Kamel1,*, Mai A. Fadel2, Lamiaa Elrefaei1,3, Shimaa I. Hassan1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 373-411, 2025, DOI:10.32604/cmes.2025.062837 - 11 April 2025

    Abstract Visual question answering (VQA) is a multimodal task, involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer. In this paper, we propose a VQA system intended to answer yes/no questions about real-world images, in Arabic. To support a robust VQA system, we work in two directions: (1) Using deep neural networks to semantically represent the given image and question in a fine-grained manner, namely ResNet-152 and Gated Recurrent Units (GRU). (2) Studying the role of the utilized multimodal bilinear… More >

  • Open Access

    ARTICLE

    Intrusion Detection in NSL-KDD Dataset Using Hybrid Self-Organizing Map Model

    Noveela Iftikhar1, Mujeeb Ur Rehman1, Mumtaz Ali Shah2, Mohammed J. F. Alenazi3, Jehad Ali4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 639-671, 2025, DOI:10.32604/cmes.2025.062788 - 11 April 2025

    Abstract Intrusion attempts against Internet of Things (IoT) devices have significantly increased in the last few years. These devices are now easy targets for hackers because of their built-in security flaws. Combining a Self-Organizing Map (SOM) hybrid anomaly detection system for dimensionality reduction with the inherited nature of clustering and Extreme Gradient Boosting (XGBoost) for multi-class classification can improve network traffic intrusion detection. The proposed model is evaluated on the NSL-KDD dataset. The hybrid approach outperforms the baseline line models, Multilayer perceptron model, and SOM-KNN (k-nearest neighbors) model in precision, recall, and F1-score, highlighting the proposed More >

Displaying 1-10 on page 1 of 4045. Per Page